J. DIFFERENTIAL GEOMETRY 89 (2011) 1-9

ON A CONJECTURE OF KASHIWARA RELATING CHERN AND EULER CLASSES OF O-MODULES

JULIEN GRIVAUX

Abstract

In this note we prove a conjecture of Kashiwara, which states that the Euler class of a coherent analytic sheaf \mathcal{F} on a complex manifold X is the product of the Chern character of \mathcal{F} with the Todd class of X. As a corollary, we obtain a functorial proof of the Grothendieck–Riemann–Roch theorem in Hodge cohomology for complex manifolds.

1. Introduction

The notation used throughout this article is defined in §2.

Let X be a complex manifold, ω_X be the holomorphic dualizing complex of X, δ_X be the diagonal injection of X in $X \times X$, and $D^{\rm b}_{\rm coh}(X)$ be the full subcategory of the bounded derived category of analytic sheaves on X consisting of objects with coherent cohomology. In the letter [7] that is reproduced in Chapter 5 of [6], Kashiwara constructs for every \mathcal{F} in $D^{\rm b}_{\rm coh}(X)$ two cohomology classes $hh_X(\mathcal{F})$ and $thh_X(\mathcal{F})$ in $H^0_{\rm supp(\mathcal{F})}(X, \delta^*_X \delta_{X*} \mathcal{O}_X)$ and $H^0_{\rm supp(\mathcal{F})}(X, \delta^!_X \delta_{X!} \omega_X)$; they are the Hochschild and co-Hochschild classes of \mathcal{F} .

Let us point out that characteristic classes in Hochschild homology are wellknown in homological algebra (see $[8, \S 8]$). They have been recently intensively studied in various algebraico-geometric contexts. For further details, we refer the reader to [3, 2, 13] and to the references therein.

If $f: X \longrightarrow Y$ is a holomorphic map, the classes hh_X and thh_X satisfy the following dual functoriality properties:

- For every \mathcal{G} in $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(Y)$, $\mathrm{hh}_X(f^*\mathcal{G}) = f^* \mathrm{hh}_Y(\mathcal{G})$.
- For every \mathcal{F} in $\mathrm{D^{b}_{coh}}(X)$ such that f is proper on $\mathrm{supp}(\mathcal{F})$,

$$\operatorname{thh}_Y(Rf_!\mathcal{F}) = f_!\operatorname{thh}_X(\mathcal{F})$$

Received 2/17/2010.

The analytic Hochschild–Kostant–Rosenberg isomorphisms constructed in [7] are specific isomorphisms

$$\delta_X^* \delta_{X*} \mathcal{O}_X \simeq \bigoplus_{i \ge 0} \Omega_X^i[i] \qquad \text{and} \qquad \delta_X^! \delta_{X!} \, \omega_X \simeq \bigoplus_{i \ge 0} \Omega_X^i[i]$$

in $D^{b}_{coh}(X)$. The Hochschild and co-Hochschild classes of an element \mathcal{F} in $D^{b}_{coh}(X)$ are mapped via the above HKR isomorphisms to the socalled Chern and Euler classes of \mathcal{F} in $\bigoplus_{i\geq 0} \operatorname{H}^{i}_{\operatorname{supp}(\mathcal{F})}(X, \Omega^{i}_{X})$, denoted by $\operatorname{ch}(\mathcal{F})$ and $\operatorname{eu}(\mathcal{F})$ $ch(\mathcal{F})$ and $eu(\mathcal{F})$.

The natural morphism

$$\bigoplus_{i\geq 0} \mathrm{H}^{i}_{\mathrm{supp}(\mathcal{F})}(X, \Omega^{i}_{X}) \longrightarrow \bigoplus_{i\geq 0} \mathrm{H}^{i}(X, \Omega^{i}_{X})$$

maps $ch(\mathcal{F})$ to the usual Chern character of \mathcal{F} in Hodge cohomology, which is obtained by taking the trace of the exponential of the Atiyah class of the tangent bundle TX.¹

The Chern and Euler classes satisfy the same functoriality properties as the Hochschild and co-Hochschild classes—namely, for every holomorphic map f from X to Y we have the following:

- For every \mathcal{G} in $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(Y)$, $\mathrm{ch}(f^*\mathcal{G}) = f^* \mathrm{ch}(\mathcal{G})$, For every \mathcal{F} in $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X)$ such that f is proper on $\mathrm{supp}(\mathcal{F})$,

 $\operatorname{eu}(Rf_{!}\mathcal{F}) = f_{!}\operatorname{eu}(\mathcal{F}).$

Furthermore, for every \mathcal{F} in $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X)$, $\mathrm{eu}(\mathcal{F}) = \mathrm{ch}(\mathcal{F}) \mathrm{eu}(\mathcal{O}_X)$. Putting together the previous identity with the functoriality of the Euler class with respect to direct images, Kashiwara obtained the following Grothendieck-Riemann-Roch theorem:

Theorem 1.1. [7] Let $f: X \longrightarrow Y$ be a holomorphic map and \mathcal{F} be an element of $\operatorname{D_{coh}^{b}}(X)$ such that f is proper on $\operatorname{supp}(\mathcal{F})$. Then the following identity holds in $\bigoplus_{i\geq 0} \operatorname{H}^{i}_{f[\operatorname{supp}(\mathcal{F})]}(Y, \Omega_{Y}^{i})$:

$$\operatorname{ch}(Rf_{!}\mathcal{F})\operatorname{eu}(\mathcal{O}_{Y}) = f_{!}\left[\operatorname{ch}(\mathcal{F})\operatorname{eu}(\mathcal{O}_{X})\right].$$

Then Kashiwara stated the following conjecture (see $[6, \S 5.3.4]$):

Conjecture 1.2. [7] For any complex manifold X, the class $eu(\mathcal{O}_X)$ is the Todd class of the tangent bundle TX.

This conjecture was related to another conjecture of Schapira and Schneiders comparing the Euler class of a \mathscr{D}_X -module \mathfrak{m} and the Chern class of the associated \mathcal{O}_X -module $\operatorname{Gr}(\mathfrak{m})$ (see [12, 1]).

¹This property has been proved in [2] for algebraic varieties using different definitions of the HKR isomorphism and of the Hochschild class. In Kashiwara's setting, this is straightforward.

The aim of this note is to give a simple proof of Kashiwara's conjecture:

Theorem 1.3. For any complex manifold X, $eu(\mathcal{O}_X)$ is the Todd class of TX.

In the algebraic setting, an analogous result is established in [11] (see also [9]).

As a corollary of Theorem 1.3, we obtain the Grothendieck-Riemann-Roch theorem in Hodge cohomology for abstract complex manifolds, which has been already proved by different methods in [10]:

Theorem 1.4. Let $f: X \longrightarrow Y$ be a holomorphic map between complex manifolds, and let \mathcal{F} be an element of $D^{b}_{coh}(X)$ such that f is proper on $supp(\mathcal{F})$. Then

$$\operatorname{ch}(Rf_{!}\mathcal{F})\operatorname{td}(Y) = f_{!}\left[\operatorname{ch}(\mathcal{F})\operatorname{td}(X)\right]$$

 $in \bigoplus_{i \ge 0} \mathrm{H}^{i}_{f[\mathrm{supp}(\mathcal{F})]}(Y, \Omega^{i}_{Y}).$

However, the proof given here is simpler and more conceptual. Besides, we would like to emphasize that it is entirely self-contained and relies only on the results appearing in Chapter 5 of [6].

Acknowledgements. I want to thank Masaki Kashiwara and Pierre Schapira for communicating their preprint [6] to me. I also want to thank Pierre Schapira for useful conversations, and Joseph Lipman for interesting comments.

2. Notations and basic results

We follow the notation of [6, Ch.5].

If X is a complex manifold, we denote by $D^{b}(X)$ the bounded derived category of sheaves of \mathcal{O}_{X} -modules and by $D^{b}_{coh}(X)$ the full subcategory of $D^{b}(X)$ consisting of complexes with coherent cohomology.

If $f: X \longrightarrow Y$ is a holomorphic map between complex manifolds, the four operations $f^*: D^{\mathrm{b}}(Y) \longrightarrow D^{\mathrm{b}}(X)$, $Rf_*, Rf_!: D^{\mathrm{b}}(X) \longrightarrow D^{\mathrm{b}}(Y)$, and $f^!: D^{\mathrm{b}}(Y) \longrightarrow D^{\mathrm{b}}(X)$ are part of the formalism of Grothendieck's six operations. Let us recall their definitions:

- $-f^*$ is the left derived functor of the pullback functor by f, that is, $\mathcal{G} \rightarrow \mathcal{G} \otimes_{f^{-1}\mathcal{O}_{Y}} \mathcal{O}_{X}.$
- Rf_* is the right derived functor of the direct image functor f_* , it is the left adjoint to the functor f^* .
- $-Rf_{!}$ is the right derived functor of the proper direct image functor $f_{!}$.
- -f' is the exceptional inverse image; it is the right adjoint to the functor Rf_1 .

If W is a closed complex submanifold of Y, the pullback morphism from $f^*\Omega^i_Y[i]$ to $\Omega^i_X[i]$ induces in cohomology a map

$$f^* \colon \bigoplus_{i \ge 0} \mathrm{H}^i_W(Y, \Omega^i_Y) \longrightarrow \bigoplus_{i \ge 0} \mathrm{H}^i_{f^{-1}(W)}(X, \Omega^i_X).$$

If Z is a closed complex submanifold of X and if f is proper on Z, the integration morphism from $\Omega_X^{i+d_X}[i+d_X]$ to $\Omega_Y^{i+d_Y}[i+d_Y]$ induces a Gysin morphism

$$f_!: \bigoplus_{i \ge -d_X} \mathrm{H}_Z^{i+d_X}(X, \Omega_X^{i+d_X}) \longrightarrow \bigoplus_{i \ge -d_Y} \mathrm{H}_{f(Z)}^{i+d_Y}(Y, \Omega_Y^{i+d_Y}).$$

Let X be a complex manifold, ω_X be the holomorphic dualizing complex of X, and δ_X be the diagonal injection. If \mathcal{F} belongs to $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X)$, we define the ordinary dual (resp. Verdier dual) of \mathcal{F} by the usual formula $D'\mathcal{F} = \mathcal{RHom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ (resp. $D\mathcal{F} = \mathcal{RHom}_{\mathcal{O}_X}(\mathcal{F}, \omega_X)$).

The Hochschild and co-Hochschild classes of \mathcal{F} , denoted by $hh_X(\mathcal{F})$ and $thh_X(\mathcal{F})$, lie in $H^0_{supp(\mathcal{F})}(X, \delta^*_X \delta_{X*} \mathcal{O}_X)$ and $H^0_{supp(\mathcal{F})}(X, \delta^!_X \delta_{X!} \omega_X)$, respectively. They are constructed by the chains of maps

$$\begin{split} \mathrm{hh}_X(\mathcal{F}) : & \mathrm{id} \longrightarrow \mathcal{R}\mathcal{H}om(\mathcal{F},\mathcal{F}) \xrightarrow{\sim} \delta_X^*(D'\mathcal{F} \boxtimes_{\mathcal{O}} \mathcal{F}) \longrightarrow \delta_X^* \delta_{X*} \mathcal{O}_X, \\ \mathrm{thh}_X(\mathcal{F}) : & \mathrm{id} \longrightarrow \mathcal{R}\mathcal{H}om(\mathcal{F},\mathcal{F}) \xrightarrow{\sim} \delta_X^!(D\mathcal{F} \boxtimes_{\mathcal{O}} \mathcal{F}) \longrightarrow \delta_X^! \delta_{X!} \, \omega_X \end{split}$$

where in both cases the last arrows are obtained from the derived trace maps

$$D'\mathcal{F} \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \mathcal{F} \longrightarrow \mathcal{O}_X \quad \text{and} \quad D\mathcal{F} \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \mathcal{F} \longrightarrow \omega_X$$

by adjunction.

If $f: X \longrightarrow Y$ is a holomorphic map between complex manifolds, there are pullback and push-forward morphisms

$$f^*: f^* \delta_Y^* \delta_{Y*} \mathcal{O}_Y \longrightarrow \delta_X^* \delta_{X*} \mathcal{O}_X \text{ and } f_!: Rf_! \delta_X^! \delta_{X!} \omega_X \longrightarrow \delta_Y^! \delta_{Y!} \omega_Y.$$

Besides, there is a natural pairing

(1)
$$\delta_X^* \delta_{X*} \mathcal{O}_X \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \delta_X^! \delta_{X!} \omega_X \to \delta_X^! \delta_{X!} \omega_X$$

given by the chain

$$\delta_X^* \delta_{X*} \mathcal{O}_X \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \delta_X^! \delta_{X!} \omega_X \simeq \delta_X^! (\delta_{X*} \mathcal{O}_X \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_{X \times X}} \delta_{X!} \omega_X) \twoheadrightarrow \delta_X^! \delta_{X!} \omega_X.$$

Theorem 2.1. [7]

(i) For all elements \mathcal{F} and \mathcal{G} in $D^{\mathrm{b}}_{\mathrm{coh}}(X)$ and $D^{\mathrm{b}}_{\mathrm{coh}}(Y)$ respectively, $\mathrm{hh}_{X}(f^{*}\mathcal{G}) = f^{*} \mathrm{hh}_{Y}(\mathcal{G})$ and $f_{!} \mathrm{thh}_{X}(\mathcal{F}) = \mathrm{thh}_{Y}(Rf_{!}\mathcal{F}).$

(ii) Via the pairing (1), for every
$$\mathcal{F}$$
 in $D^{\mathrm{b}}_{\mathrm{coh}}(X)$,
 $\mathrm{hh}_X(\mathcal{F}) \mathrm{thh}(\mathcal{O}_X) = \mathrm{thh}_X(\mathcal{F}).$

The Hochschild and co-Hochschild classes are translated into Hodge cohomology classes by Kashiwara's analytic Hochschild-Kostant-Rosenberg isomorphisms²

(2)
$$\delta_X^* \delta_{X*} \mathcal{O}_X \simeq \bigoplus_{i \ge 0} \Omega_X^i[i]$$
 and $\delta_X^! \delta_{X!} \omega_X \simeq \bigoplus_{i \ge 0} \Omega_X^i[i],$

and the resulting classes are called Chern and Euler classes. If $\mathcal F$ is an element of $\mathrm{D}^{\mathrm{b}}_{\mathrm{coh}}(X)$, then $\mathrm{ch}(\mathcal{F})$ and $\mathrm{eu}(\mathcal{F})$ lie in $\bigoplus_{i\geq 0} \mathrm{H}^{i}_{\mathrm{supp}(\mathcal{F})}(X, \Omega^{i}_{X})$.

The first HKR isomorphism commutes with $pull\bar{b}ack$ and the second one with push forward. Besides, the pairing (1) between $\delta_X^* \delta_{X*} \mathcal{O}_X$ and $\delta_X^! \delta_{X!} \omega_X$ is exactly the cup-product on holomorphic differential forms after applying the HKR isomorphisms (2).

Theorem 2.2. [7]

- (i) For every \mathcal{F} in $D^{\mathrm{b}}_{\mathrm{coh}}(X)$, $\mathrm{ch}(\mathcal{F})$ is the usual Chern character obtained by the Atiyah exact sequence.
- (ii) For all elements \$\mathcal{F}\$ and \$\mathcal{G}\$ in \$D^{b}_{coh}(X)\$ and \$D^{b}_{coh}(X)\$ respectively, ch(f*\mathcal{G}) = f* ch(\mathcal{G})\$ and \$f_{!}eu(\mathcal{F}) = eu(Rf_{!}\mathcal{F})\$.
 (iii) For every \$\mathcal{F}\$ in \$D^{b}_{coh}(X)\$, eu(\mathcal{F}) = ch(\mathcal{F})eu(\mathcal{O}_X)\$.

For the proofs of Theorems 2.1 and 2.2, we refer to [6, Ch. 5]. For any complex manifold X, we denote by td(X) the Todd class of

the tangent bundle TX in $\bigoplus H^i(X, \Omega^i_X)$.

3. Proof of Theorem 1.3

We proceed in several steps.

Proposition 3.1. Let Y and Z be complex manifolds such that Zis a closed complex submanifold of Y, and let i_Z be the corresponding inclusion. Then, for every coherent sheaf \mathcal{F} on Z, we have

$$i_{Z!} [\operatorname{ch}(\mathcal{F}) \operatorname{td}(Z)] = \operatorname{ch}(i_{Z*}\mathcal{F}) \operatorname{td}(Y)$$

 $in \bigoplus_{i \geq 0} \mathrm{H}^i_Z(Y, \Omega^i_Y).$

Proof. This is proved in the classical way using the deformation to the normal cone as in $[4, \S15.2]$, except that we use local cohomology. For the sake of completeness, we provide a detailed proof.

We start by a particular case:

- \mathcal{N} is a holomorphic vector bundle on Z, and $Y = \mathbb{P}(\mathcal{N} \oplus \mathcal{O}_Z)$.

²For a detailed account of the HKR isomorphisms, we refer to the introduction of [5] and to the references therein.

J. GRIVAUX

- Z embeds in Y by identifying Z with the zero section of \mathcal{N} . Let d be the rank of \mathcal{N} , π be the projection of the projective bundle $\mathbb{P}(\mathcal{N} \oplus \mathcal{O}_Z)$, and \mathcal{Q} be the universal quotient bundle on Y; \mathcal{Q} is the quotient of $\pi^*(\mathcal{N} \oplus \mathcal{O}_Z)$ by the tautological line bundle $\mathcal{O}_{\mathcal{N} \oplus \mathcal{O}_Z}(-1)$. Then \mathcal{Q} has a canonical holomorphic section s that is obtained by the composition

$$s: \mathcal{O}_Y \simeq \pi^* \mathcal{O}_Z \longrightarrow \pi^* (\mathcal{N} \oplus \mathcal{O}_Z) \longrightarrow \mathcal{Q}.$$

This section vanishes transversally along its zero locus, which is exactly Z. Therefore, we have a natural locally free resolution of $i_{Z!}\mathcal{O}_Z$ given by the Koszul complex associated with the pair (\mathcal{Q}^*, s^*) :

$$0 \longrightarrow \wedge^{d} \mathcal{Q}^{*} \longrightarrow \wedge^{d-1} \mathcal{Q}^{*} \longrightarrow \cdots \longrightarrow \mathcal{O}_{Y} \longrightarrow i_{Z!} \mathcal{O}_{Z} \longrightarrow 0.$$

This gives the equality

$$\operatorname{ch}(i_{Z!}\mathcal{O}_Z) = \sum_{k=0}^d (-1)^k \operatorname{ch}(\wedge^k \mathcal{Q}^*) = \operatorname{c}_d(\mathcal{Q}) \operatorname{td}(\mathcal{Q})^{-1}$$

in $\bigoplus_{i\geq 0} \mathrm{H}^{i}(Y, \Omega_{Y}^{i})$, where $\mathrm{c}_{d}(\mathcal{Q})$ denotes the *d*th Chern class of \mathcal{Q} (for the last equality see $[4, \delta, 3, 2, 5]$). Since $\mathrm{c}_{d}(\mathcal{Q})$ is the image of the constant

last equality, see [4, § 3.2.5]). Since $c_d(Q)$ is the image of the constant class 1 by $i_{Z!}$ and since $i_Z^*Q = \mathcal{N}$, we get

$$\operatorname{ch}(i_{Z!}\mathcal{O}_Z) = i_{Z!}(i_Z^* \operatorname{td}(\mathcal{Q})^{-1}) = i_{Z!}(\operatorname{td}(\mathcal{N})^{-1}).$$

For any coherent sheaf \mathcal{F} on Z, we have $i_{Z!}\mathcal{F} = i_{Z!}\mathcal{O}_Z \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_Y} \pi^*\mathcal{F}$ so that we obtain by the projection formula

(3)
$$\operatorname{ch}(i_{Z!}\mathcal{F}) = i_{Z!}(\operatorname{ch}(\mathcal{F})\operatorname{td}(\mathcal{N})^{-1})$$

in $\bigoplus_{i\geq 0} \mathrm{H}^i(Y, \Omega^i_Y).$ Remark now that by Theorem 2.2 (ii) and (iii), we have

$$\operatorname{ch}(i_{Z'}\mathcal{F}) = i_{Z'}(\operatorname{ch}(\mathcal{F})\operatorname{eu}(\mathcal{O}_Z) i_Z^* \operatorname{eu}(\mathcal{O}_Y)^{-1})$$

in $\bigoplus_{i\geq 0} \operatorname{H}^{i}_{Z}(Y, \Omega^{i}_{Y})$. This proves that $\operatorname{ch}(i_{Z!}\mathcal{F})$ lies in the image of

$$i_{Z!} \colon \bigoplus_{i \ge 0} \mathrm{H}^{i}(Z, \Omega_{Z}^{i}) \longrightarrow \bigoplus_{i \ge 0} \mathrm{H}_{Z}^{i+d}(Y, \Omega_{Y}^{i+d}).$$

Let us denote this image by W. The map

$$\iota: W \longrightarrow \bigoplus_{i \ge 0} \mathrm{H}^{i+d}(Y, \Omega_Y^{i+d})$$

obtained by forgetting the support is injective. Indeed, for every class $i_{Z!}\alpha$ in W, $\pi_![\iota(i_{Z!}\alpha)] = \alpha$. This implies that (3) holds in $\bigoplus_{i>0} \mathrm{H}^i_Z(Y, \Omega^i_Y)$.

We now turn to the general case, using deformation to the normal cone. Let us introduce some notation:

- *M* is the blowup of $Z \times \{0\}$ in $Y \times \mathbb{P}^1$, and σ is the blowup map and $q = \operatorname{pr}_1 \circ \sigma$.
- For any divisor D on M, [D] denotes its cohomological cycle class in $\mathrm{H}^{1}(M, \Omega_{M}^{1})$.
- $-E = \mathbb{P}(N_{Z/Y} \oplus \mathcal{O}_Z)$ is the exceptional divisor of the blowup, and \widetilde{Y} is the strict transform of $Y \times \{0\}$ in M.
- μ is the embedding of Z in E, where Z is identified with the zero section of $N_{Z/Y}$.
- F is the embedding of (the strict transform of) $Z \times \mathbb{P}^1$ in M, and, for any t in \mathbb{P}^1 , j_t is the embedding of M_t in M.
- -k is the embedding of E in M.

Then M is flat over \mathbb{P}^1 , M_0 is a Cartier divisor with two smooth components E and \widetilde{Y} intersecting transversally along $\mathbb{P}(N_{Z/Y})$, and M_t is isomorphic to Y if t is nonzero.

Let $\mathcal{G} = F_1(\operatorname{pr}_1^* \mathcal{F})$. Since *M* is flat over \mathbb{P}^1 , for any *t* in $\mathbb{P}^1 \setminus \{0\}$,

$$j_t^* \mathcal{G} = i_{Z!} \mathcal{F}$$
 and $k^* \mathcal{G} = \mu_! \mathcal{F}$.

If $ch(\mathcal{G})$ is the Chern character of \mathcal{G} in $\bigoplus_{i\geq 0} H^i_{Z\times\mathbb{P}^1}(M,\Omega^i_M)$, using the

identity (3) in $\bigoplus_{i\geq 0} \mathrm{H}^{i}_{Z}(E,\Omega^{i}_{E}),$ we get

$$\begin{split} j_{t!} \operatorname{ch}(i_{Z!}\mathcal{F}) &= j_{t!} \, j_t^* \operatorname{ch}(\mathcal{G}) = \operatorname{ch}(\mathcal{G}) \, [M_t] \\ &= \operatorname{ch}(\mathcal{G}) \, [M_0] = \operatorname{ch}(\mathcal{G}) \, [E] + \operatorname{ch}(\mathcal{G}) \, [\widetilde{Y}] \\ &= \operatorname{ch}(\mathcal{G}) \, [E] = k_! \, k^* \operatorname{ch}(\mathcal{G}) = k_! \operatorname{ch}(\mu_! \mathcal{F}) \\ &= k_! \, \mu_! (\operatorname{ch}(\mathcal{F}) \operatorname{td}(N_{Z/E})^{-1}) \\ &= k_! \, \mu_! (\operatorname{ch}(\mathcal{F}) \operatorname{td}(N_{Z/X})^{-1}) \end{split}$$

 $\text{ in } \bigoplus_{i \geq 0} \mathrm{H}^{i}_{Z \times \mathbb{P}^{1}}(M, \Omega^{i}_{M}).$

The map q is proper on $Z \times \mathbb{P}^1$, $q \circ j_t = \text{id}$ and $q \circ k \circ \mu = i_Z$. Applying q_1 , we get

$$\operatorname{ch}(i_{Z!}\mathcal{F}) = i_{Z!}(\operatorname{ch}(\mathcal{F})\operatorname{td}(N_{Z/X})^{-1})$$

 $\text{ in } \bigoplus_{i \geq 0} \mathrm{H}^{i}_{Z}(Y, \Omega^{\,i}_{Y}).$

Definition 3.2. For any complex manifold X, let $\alpha(X)$ be the cohomology class in $\bigoplus_{i\geq 0} \operatorname{H}^{i}(X, \Omega_{X}^{i})$ defined by $\alpha(X) = \operatorname{eu}(\mathcal{O}_{X}) \operatorname{td}(X)^{-1}$.

Lemma 3.3. Let Y and Z be complex manifolds such that Z is a closed complex submanifold of Y, and let i_Z be the corresponding injection. Assume that there exists a holomorphic retraction R of i_Z . Then we have $\alpha(Z) = i_Z^* \alpha(Y)$.

q.e.d.

Proof. By Theorem 2.2 (ii), $eu(i_{Z*}\mathcal{O}_Z) = i_{Z!}eu(\mathcal{O}_Z)$. By Proposition 3.1 and Theorem 2.2 (iii),

$$\mathrm{eu}(i_{Z*}\mathcal{O}_Z) = \mathrm{ch}(i_{Z*}\mathcal{O}_Z)\mathrm{eu}(\mathcal{O}_Y) = (i_{Z!}\operatorname{td}(Z))\operatorname{td}(Y)^{-1}\mathrm{eu}(\mathcal{O}_Y),$$

so that we obtain in $\bigoplus_{i\geq 0} \mathrm{H}^i_Z(Y,\Omega^i_Y)$ the formula

$$i_{Z!} \left[\operatorname{eu}(\mathcal{O}_Z) - \operatorname{td}(Z) \, i_Z^*(\operatorname{eu}(\mathcal{O}_Y) \operatorname{td}(Y)^{-1}) \right] = 0.$$

Since R is proper on Z, we can apply $R_!$ and we get the result. q.e.d.

Lemma 3.4. The class $\alpha(X)$ satisfies $\alpha(X)^2 = \alpha(X)$.

Proof. We apply Lemma 3.3 with Z = X and $Y = X \times X$, where X is diagonally embedded in $X \times X$. Then $\alpha(X) = i_{\Delta}^* \alpha(X \times X)$. The Euler class commutes with external products so that

$$\operatorname{eu}(\mathcal{O}_{X \times X}) = \operatorname{eu}(\mathcal{O}_X) \boxtimes \operatorname{eu}(\mathcal{O}_X).$$

Thus, $\alpha(X \times X) = \alpha(X) \boxtimes \alpha(X)$ and we obtain

$$\alpha(X) = i_{\Delta}^*[\alpha(X) \boxtimes \alpha(X)] = \alpha(X)^2.$$

q.e.d.

Proof of Theorem 1.3. There is a natural isomorphism ϕ in $D^{b}_{coh}(X)$ between $\delta^{*}\delta_{*}\mathcal{O}_{X}$ and $\delta^{!}\delta_{!}\omega_{X}$ given by the chain

$$\delta^* \delta_* \mathcal{O}_X \simeq \mathcal{O}_X \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \delta^* \delta_* \mathcal{O}_X \simeq \delta^! (\omega_X \boxtimes \mathcal{O}_X) \overset{\mathbb{L}}{\otimes}_{\mathcal{O}_X} \delta^* \delta_* \mathcal{O}_X \simeq \delta^! \delta_! \omega_X.$$

Besides, after applying the two HKR isomorphisms (2), ϕ is given by derived cup-product with the Euler class of \mathcal{O}_X (see [6]). Therefore, the class $\operatorname{eu}(\mathcal{O}_X)$ is invertible in the Hodge cohomology ring of X, and so is $\alpha(X)$. Lemma 3.4 implies that $\alpha(X) = 1$. q.e.d.

References

- P. Bressler, R. Nest & B. Tsygan, *Riemann-Roch theorems via deformation quantization I, II*, Adv. Math., **167**(1):1–25, 26–73, 2002, MR 1901245, Zbl 1021.53064.
- [2] A. Căldăraru, The Mukai pairing, II, The Hochschild-Kostant-Rosenberg isomorphism, Adv. Math. 194(1):34–66 (2005), MR 2657369, Zbl 1098.14011.
- [3] A. Căldăraru & S. Willerton, The Mukai pairing, I. A categorical approach, New York J. Math. 16:61–98 (2010), MR 2141853, Zbl 1214.14013.
- [4] W. Fulton, Intersection theory, Springer-Verlag, Berlin, 1998, MR1644323, Zbl 0885.14002.
- J. Grivaux, The Hochschild-Kostant-Rosenberg isomorphism for quantized analytic cycles, arXiv:math/1109.0739, preprint, 2011.
- [6] M. Kashiwara & P. Schapira, Deformation quantization modules, arXiv:math/1003.3304, to appear in Astérisque, Soc. Math. France, 2012.
- [7] M. Kashiwara, unpublished letter to Pierre Schapira, 1991.

- [8] J.-L. Loday, Cyclic Homology, Springer-Verlag, Berlin, 1998, MR 1600246, Zbl 0885.18007.
- [9] N. Markarian, The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem, J. Lond. Math. Soc. (2), 79(1):129–143, 2009, MR 2472137, Zbl 1167.14005.
- [10] N.R. O'Brian, D. Toledo & Y.-L.L. Tong, A Grothendieck-Riemann-Roch formula for maps of complex manifolds, Math. Ann. 271(4):493–526, 1985, MR 790113, Zbl 0539.14005.
- [11] A.C. Ramadoss, The relative Riemann-Roch theorem from Hochschild homology, New York J. Math. 14:643–717, 2008, MR 2465798, Zbl 1158.19002.
- [12] P. Schapira & J.-P. Schneiders, *Elliptic pairs. II. Euler class and relative index theorem*, Astérisque, (224):61–98, 1994, Index theorem for elliptic pairs, MR 1305643, Zbl 0856.58039.
- [13] D. Shklyarov, Hirzebruch-Riemann-Roch theorem for differential graded algebras, arXiv:math/0710.1937, 2007.

CMI, UMR CNRS 6632 (LATP) UNIVERSITÉ DE PROVENCE 39, RUE FRÉDÉRIC JOLIOT-CURIE 13453 MARSEILLE CEDEX 13, FRANCE *E-mail address*: jgrivaux@cmi.univ-mrs.fr