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PARABOLIC AUTOMORPHISMS OF PROJECTIVE SURFACES

(AFTER M. H. GIZATULLIN)

JULIEN GRIVAUX

Abstract. In 1980, Gizatullin classified rational surfaces endowed with
an automorphism whose action on the Neron–Severi group is parabolic:
these surfaces are endowed with an elliptic fibration invariant by the
automorphism. The aim of this expository paper is to present for non-
experts the details of Gizatullin’s original proof, and to provide an in-
troduction to a recent paper by Cantat and Dolgachev.
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1. Introduction

Let X be a projective complex surface. The Neron–Severi group NS(X) is a free
abelian group endowed with an intersection form whose extension to NSR(X) has
signature (1, h1,1(X)−1). Any automorphism of f acts by pullback on NS(X), and
this action is isometric. The corresponding isometry f∗ can be of three different
types: elliptic, parabolic or hyperbolic. These situations can be read on the growth
of the iterates of f∗. If ‖ · ‖ is any norm on NSR(X), they correspond respectively
to the following situations: ‖(f∗)n‖ is bounded, ‖(f∗)n‖ ∼ Cn2 and ‖(f∗)n‖ ∼ λn

for λ > 1. This paper is concerned with the study of parabolic automorphisms of
projective complex surfaces. The initial motivation to their study was that para-
bolic automorphisms don’t come from PGL(N, C) via some projective embedding
X ↪→ PN . Indeed, if f is an automorphism coming from PGL(N, C), then f∗ must
preserve an ample class in NS(X), so f∗ is elliptic. The first known example of
such a pair (X, f), due to initially to Coble [8] and popularised by Shafarevich,
goes as follows: consider a generic pencil of cubic curves in P2, it has 9 base points.
Besides, all the curves in the pencil are smooth elliptic curves except 12 nodal
curves. After blowing up the nine base points, we get a elliptic surface X with 12
singular fibers and 9 sections s1, . . . , s9 corresponding to the exceptional divisors,
called a Halphen surface (of index 1). The section s1 specifies an origin on each
smooth fiber of X. For 2 6 i 6 8, we have a natural automorphism σi of the
generic fiber of X given by the formula σi(x) = x+ si − s1. It is possible to prove
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that the σi’s extend to automorphisms of X and generate a free abelian group of
rank 8 in Aut(X). In particular, any nonzero element in this group is parabolic
since the group of automorphisms of an elliptic curve fixing the class of an ample
divisor is finite. In many aspects, this example is a faithful illustration of parabolic
automorphisms on projective surfaces.

A complete classification of pairs (X, f) where f is a parabolic automorphism
of X is given in [11]. In his paper, Gizatullin considers not only parabolic auto-
morphisms, but more generally groups of automorphisms containing only parabolic
or elliptic1 elements. We call such groups of moderate growth, since the image of
any element of the group in GL(NS(X)) has polynomial growth. Gizatullin’s main
result runs as follows:

Theorem 1.1 [11]. Let X be a smooth projective complex surface and G be an
infinite subgroup of Aut(X) of moderate growth. Then there exists a unique elliptic
G-invariant fibration on X.

Of course, if X admits one parabolic automorphism f , we can apply this theorem
with the group G = Z, and we get a unique f -invariant elliptic fibration on X. It
turns out that it is possible to reduce Theorem 1.1 to the case G = Z by abstract
arguments of linear algebra.

In all cases except rational surfaces, parabolic automorphisms come from mini-
mal models, and are therefore quite easy to understand. The main difficulty occurs
in the case of rational surfaces. As a corollary of the classification of relatively
minimal elliptic surfaces, the relative minimal model of a rational elliptic surface is
a Halphen surface of some index m. Such surfaces are obtained by blowing up the
base points of a pencil of curves of degree 3m in P2. By definition, X is a Halphen
surface of index m if the divisor −mKX has no fixed part and |−mKX | is a pencil
without base point giving the elliptic fibration.

Theorem 1.2 [11]. Let X be an Halphen surface of index m, S1, . . . , Sλ the reduc-

ible fibers and µi the number of reducible components of Si, and s =
∑λ
i=1{µi− 1}.

Then s 6 8, and there exists a free abelian group GX of rank s− 8 in Aut(X) such
that every nonzero element of this group is parabolic and acts by translation along
the fibers. If λ > 3, G has finite index in Aut(X).

The number λ of reducible fibers is at least two, and the case λ = 2 is very
special since all smooth fibers of X are isomorphic to a fixed elliptic curve. In this
case the automorphism group of X is an extension of C× by a finite group, s = 8,
and the image of the representation ρ : Aut(X)→ GL(NS(X)) is finite.

Let us now present applications of Gizatullin’s construction. The first applica-
tion lies in the theory of classification of birational maps of surfaces, which is an
important subject both in complex dynamics and in algebraic geometry. One foun-
dational result in the subject is Diller–Favre’s classification theorem [10], which we
recall now. If X is a projective complex surface and f is a birational map of X, then
f acts on the Neron–Severi group NS(X). The conjugacy types of birational maps

1Gizatullin considers only parabolic elements, but most of his arguments apply to the case of

groups containing elliptic elements as well as soon an they contain at least one parabolic element.
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can be classified in four different types, which can be detected by looking at the
growth of the endomorphisms (f∗)n. The first type corresponds to birational maps
f such that ‖(f∗)n‖ ∼ αn. These maps are never conjugate to automorphisms of
birational models on X and they preserve a rational fibration. The three other
remaining cases are ‖(f∗)n‖ bounded, ‖(f∗)n‖ ∼ Cn2 and ‖(f∗)n‖ ∼ Cλn. In the
first two cases, Diller and Favre prove that f is conjugate to an automorphism of a
birational model of X. The reader can keep in mind the similarity between the last
three cases and Nielsen–Thurston’s classification of elements in the mapping class
group into three types: periodic, reducible and pseudo-Anosov. The first class is
now well understood (see [4]), and constructing automorphisms in the last class is
a difficult problem (see [2], [15] for a systematic construction of examples in this
category, as well as [3], [5] and [9] for more recent results). The second class fits
exactly to Gizatullin’s result: using it, we get that f preserves an elliptic fibration.

Another feature of Gizatullin’s theorem is to give a method to construct hyper-
bolic automorphisms on surfaces. This seems to be paradoxal since Gizatullin’s
result only deals with parabolic automorphisms. However, the key idea is the fol-
lowing: if f and g are two parabolic (or even elliptic) automorphisms of a surface
generating a group G of moderate growth, then f∗ and g∗ share a common nef
class in NS(X), which is the class of any fiber of the G-invariant elliptic fibration.
Therefore, if f and g don’t share a fixed nef class in NS(X), some element in the
group G must be hyperbolic. In fact it is possible to prove that either fg or fg−1

is hyperbolic.
Throughout the paper, we work for simplicity over the field of complex numbers.

However, the arguments can be extended to any field of any characteristic with
minor changes. We refer to the paper [7] for more details.

Acknowledgements. I would like to thank Charles Favre for pointing to me
Gizatullin’s paper and encouraging me to write this text, as well as Jeremy Blanc,
Julie Déserti and Igor Dolgachev for very useful comments.

2. Notations and Conventions

Throughout the paper, X denotes a smooth complex projective surface, which
will always be assumed rational except in Section 4.

By divisor, we will always mean Z-divisor. A divisor D =
∑
i aiDi on X is

called primitive if gcd(ai) = 1.
If D and D′ are two divisors on X, we write D ∼ D′ (resp. D ≡ D′) if D and

D′ are linearly (resp. numerically) equivalent.
For any divisor D, we denote by |D| the complete linear system of D, i.e., the set

of effective divisors linearly equivalent to D; it is isomorphic to P(H0(X, OX(D))).
The group of divisors modulo numerical equivalence is the Neron–Severi group

of X, we denote it by NS(X). By Lefschetz’s theorem on (1, 1)-classes, NS(X) is
the set of Hodge classes of weight 2 modulo torsion, this is a Z-module of finite
rank. We also put NS(X)R = NS(X)⊗Z R.

If f is a biregular automorphism of X, we denote by f∗ the induced action on
NS(X). We will always assume that f is parabolic, which means that the induced
action f∗ of f on NSR(X) is parabolic.
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The first Chern class map is a surjective group morphism Pic(X)
c1−→ NS(X),

where Pic(X) is the Picard group of X. This morphism is an isomorphism if X is
a rational surface, and NS(X) is isomorphic to Zr with r = χ(X)− 2.

If r is the rank of NS(X), the intersection pairing induces a non-degenerate
bilinear form of signature (1, r − 1) on X by the Hodge index theorem. Thus, all
vector spaces included in the isotropic cone of the intersection form are lines.

If D is a divisor on X, D is called a nef divisor if for any algebraic curve C on X,
D ·C > 0. The same definition holds for classes in NS(X)R. By Nakai-Moishezon’s
criterion, a nef divisor has nonnegative self-intersection.

3. Isometries of a Lorentzian Form

3.1. Classification. Let V be a real vector space of dimension n endowed with
a symmetric bilinear form of signature (1, n − 1). The set of nonzero elements x
such that x2 > 0 has two connected components. We fix one of this connected
component and denote it by N.

In general, an isometry maps N either to N, either to −N. The index-two
subgroup O+(V ) of O(V ) is the subgroup of isometries leaving N invariant.

There is a complete classification of elements in O+(V ). For nice pictures corre-
sponding to these three situations, we refer the reader to Cantat’s article in [6].

Proposition 3.1. Let u be in O+(V ). Then three distinct situations can appear :

(1) u is hyperbolic: There exists λ > 1 and two distinct vectors θ+ and θ− in
N such that u(θ+) = λ θ+ and u(θ−) = λ−1θ−. All other eigenvalues of u
are of modulus 1, and u is semi-simple.

(2) u is elliptic: All eigenvalues of u are of modulus 1 and u is semi-simple.
Then u has a fixed vector in the interior of N.

(3) u is parabolic: All eigenvalues of u are of modulus 1 and u fixes pointwise a
unique ray in N, which lies in the isotropic cone. Then u is not semi-simple

and has a unique non-trivial Jordan block which is of the form

1 1 0
0 1 1

0 0 1

,

where the first vector of the block directs the unique invariant isotropic ray
in N.

Proof. The existence of an eigenvector in N follows from Brouwer’s fixed point
theorem applied to the set of positive half-lines in N, which is homeomorphic to a
closed euclidean ball in Rn−1. Let θ be such a vector and λ be the corresponding
eigenvalue.

If θ lies in the interior of N, then V = R θ ⊕ θ⊥. Since the bilinear form is
negative definite on θ⊥, u is elliptic.

If θ is isotropic and λ 6= 1, then im(u−λ−1id) ⊂ θ⊥, so λ−1 is also an eigenvalue
of u. Hence we get two isotropic eigenvectors θ+ and θ− corresponding to the
eigenvalues λ and λ−1. Then u induces an isometry of θ⊥+ ∩θ⊥−, and u is hyperbolic.

If θ is isotropic and λ = 1, and if no eigenvector of u lies in the interior of N,
we put v = u − id. If θ′ is a vector in ker(v) outside θ⊥, then θ′ + tθ lies in the
interior of N for large values of t and is fixed by u, which is impossible. Therefore
ker(v) ⊂ θ⊥. In particular, we see that Rθ is the unique u-invariant isotropic ray.
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Since θ is isotropic, the bilinear form is well-defined and negative definite on
θ⊥/Rθ, so u induces a semi-simple endomorphism u on θ⊥/Rθ. Let P be the
minimal polynomial of u, P has simple complex roots. Then there exists a linear
form ` on θ⊥ such that for any x orthogonal to θ, P (u)(x) = `(x) θ. Let E be the
kernel of `. Remark that

`(x) θ = u{`(x) θ} = u {P (u)(x)} = P (u)(u(x)) = `(u(x)) θ;

thus, ` ◦ u = `, which implies that E is stable by u. Since P (u|E) = 0, u|E is
semi-simple.

Assume that θ doesn’t belong to E. Then the quadratic form is negative definite
on E, and V = E ⊕ E⊥. On E⊥, the quadratic form has signature (1, 1). Then
the situation becomes easy because the isotropic cone consists of two lines, which
are either preserved or swapped. If they are preserved, we get the identity map.
If they are swapped, we get a reflexion along a line in the interior of the isotropic
cone, hence an elliptic element. In all cases we get a contradiction.

Assume that u|θ⊥ is semi-simple. Since ker(v) ⊂ θ⊥, we can write θ⊥ = ker(v)⊕
W , where W is stable by v and v|W is an isomorphism. Now im(v) = ker(v)⊥, and
it follows that im(v) = Rθ ⊕W . Let ζ be such that v(ζ) = θ. Then u(ζ) = ζ + θ,
so u(ζ)2 = ζ2 + 2(ζ ·θ). It follows that ζ ·θ = 0, and we get a contradiction. In
particular ` is nonzero.

Let F be the orthogonal of the subspace E, it is a plane in V stable by u,
containing θ and contained in θ⊥. Let θ′ be a vector in F such that {θ, θ′} is a
basis of F and write u(θ′) = αθ + βθ′. Since θ and θ′ are linearly independent,
θ′2 < 0. Besides, u(θ′)2 = θ′2, so β2 = 1. Assume that β = −1. If x = θ′− α

2 θ, then
u(x) = −x, so uθ⊥ is semi-simple. Thus β = 1. Since α 6= 0 we can also assume
that α = 1.

Let v = u − id. We claim that ker(v) ⊂ E. Indeed, if u(x) = x, we know that
x ∈ θ⊥. If x /∈ E, then P (u)(x) 6= 0. But P (u)(x) = P (1)x and since θ ∈ E,
P (1) = 0 and we get a contradiction. This proves the claim.

Since im(v) ⊆ ker(v)⊥, im(v) contains F . Let θ′′ be such that v(θ′′) = θ′. Since
v(θ⊥) ⊂ E, θ′′ /∈ θ⊥. The subspace generated with θ, θ′ and θ′′ is a 3 × 3 Jordan
block for u. �

Remark 3.2. Elements of the group O+(V ) can be distinguished by the growth
of the norm of their iterates. More precisely:

• If u is hyperbolic, ‖un‖ ∼ Cλn.
• If u is elliptic, ‖un‖ is bounded.
• If u is parabolic, ‖un‖ ∼ Cn2.

We can sum up the two main properties of parabolic isometries, to be used in
the sequel:

Lemma 3.3. Let u be a parabolic element of O+(V ) and θ be an isotropic fixed
vector of u.

(1) If α is an eigenvector of u, α2 6 0.
(2) If α is fixed by u, then α ·θ = 0. Besides, if α2 = 0, α and θ are proportional.
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3.2. Parabolic isometries. The elements which are the most difficult to under-
stand in O+(V ) are parabolic ones. In this section, we consider a distinguished
subset of parabolic elements associated with any isotropic vector.

Let θ be an isotropic vector in N and Qθ = θ⊥/Rθ. The quadratic form is
negative definite on Qθ. Indeed, if x ·θ = 0, x2 6 0 with equality if and only if x
and θ are proportional, so x vanishes in Qθ. If

O+(V )θ = {u ∈ O+(V ) such that u(θ) = θ}
we have a natural group morphism

χθ : O+(V )θ → O(Qθ),

and we denote by Tθ its kernel. Let us fix another isotropic vector η in N which is
not collinear to θ, and let π : V → θ⊥ ∩ η⊥ be the orthogonal projection along the
plane generated by θ and η.

Proposition 3.4. (1) The map ϕ : Tθ → θ⊥ ∩ η⊥ given by ϕ(u) = π{u(η)} is a
group isomorphism.

(2) Any element in Tθ \ {id} is parabolic.

Proof. We have V = {θ⊥ ∩ η⊥ ⊕ Rθ} ⊕ Rη = θ⊥ ⊕ Rη. Let u be in Gθ, and
denote by ζ the element ϕ(u). Let us decompose u(η) as aθ + bη + ζ. Then
0 = u(η)2 = 2ab (θ ·η) + ζ2 and we get

ab = − ζ2

2 (θ ·η)
·

Since u(θ) = θ, θ ·η = θ ·u(η) = b (θ ·η), one has b = 1. This gives

a = − ζ2

2 (θ ·η)
·

By hypothesis, there exists a linear form λ : θ⊥ ∩ η⊥ → R such that for any x in
θ⊥ ∩ η⊥, u(x) = x+ λ(x) θ. Then we have

0 = x ·η = u(x) ·u(η) = x ·ζ + λ(x) θ ·η,
so

λ(x) = − (x ·ζ)

(θ ·η)
·

This proves that u can be reconstructed from ζ. For any ζ in θ⊥∩η⊥, we can define
a map uζ fixing θ by the above formulæ, and it is an isometry. This proves that
ϕ is a bijection. To prove that ϕ is a morphism, let u and u′ be in Gθ, and put
u′′ = u′ ◦ u. Then

ζ ′′ = π{u′(u(η))} = π{u′(ζ + aθ+ η)} = π{ζ + λ(ζ)θ + aθ + ζ ′ + a′θ + η} = ζ + ζ ′.

It remains to prove that u is parabolic if ζ 6= 0. This is easy: if x = αθ + βη + y,
where y is in θ⊥ ∩ η⊥, then u(x) = {α+ λ(y)}θ + {βζ + y}. Thus, if u(x) = x, we
have λ(y) = 0 and β = 0. But in this case, x2 = y2 6 0 with equality if and only if
y = 0. It follows that R+θ is the only fixed ray in N, whence u is parabolic. �

Definition 3.5. Nonzero elements in Tθ are called parabolic translations along θ.
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This definition is justified by the fact that elements in the group Tθ act by
translation in the direction θ on θ⊥.

Proposition 3.6. Let θ, η be two isotropic and non-collinear vectors in N, and
ϕ : Tθ → θ⊥ ∩ η⊥ and ψ : Tη → θ⊥ ∩ η⊥ the corresponding isomorphisms. Let u
and v be respective nonzero elements of Tθ and Tη, and assume that there exists
an element x in N such that u(x) = v(x). Then there exists t > 0 such that
ψ(v) = t ϕ(u).

Proof. Let us write x as αθ + βη + y, where y is in θ⊥ ∩ η⊥. Then

u(x) = α θ + βζ + y + λ(y) θ and v(x) = α ζ ′ + βη + y + µ(y) η.

Therefore, if u(x) = v(x),

{α+ λ(y)}θ − {β + µ(y)}η + {βζ − αζ ′} = 0

Hence βζ − αζ ′ = 0. We claim that x doesn’t belong to the two rays Rθ and Rη.
Indeed, if y = 0, α = β = 0, so u(x) = 0. Thus, since x lies in N, x ·θ > 0 and

x ·η > 0, so α > 0 and β > 0. Hence ζ ′ =
β

α
ζ and

β

α
> 0. �

Corollary 3.7. Let θ, η two isotropic and non-collinear vectors in N and u and v
be respective nonzero elements of Tθ and Tη. Then u−1v or uv is hyperbolic.

Proof. If u−1v is not hyperbolic, then there exists a nonzero vector x in N fixed by
u−1v. Thus, thanks to Proposition 3.6, there exists t > 0 such that ψ(v) = t ϕ(u).
By the same argument, if uv is not hyperbolic, there exists s > 0 such that ψ(v) =
sϕ(u−1) = −sϕ(u). This gives a contradiction. �

3.3. A fixed point theorem. In this section, we fix a lattice Λ of rank n in V
and assume that the bilinear form on V takes integral values on the lattice Λ. We
denote by O+(Λ) the subgroup of O+(V ) fixing the lattice. We start by a simple
characterisation of elliptic isometries fixing Λ:

Lemma 3.8. (1) An element of O+(Λ) is elliptic if and only if it is of finite order.
(2) An element u of O+(Λ) is parabolic if and only if it is quasi-unipotent (which

means that there exists an integer k such that uk−1 is a nonzero nilpotent element)
and of infinite order.

Proof. (1) A finite element is obviously elliptic. Conversely, if u is an elliptic element
of O+(Λ), there exists a fixed vector α in the interior of N. Since ker(u − id) is
defined over Q, we can find such an α defined over Q. In that case, u must act
finitely on α⊥ ∩ Λ and we are done.

(2) A quasi-unipotent element of infinite order is parabolic (since it is not semi-
simple). Conversely, if g is a parabolic element in O+(Λ), the characteristic poly-
nomial of g has rational coefficients and all its roots are of modulus one. Therefore
all eigenvalues of g are roots of unity thanks to Kronecker’s theorem. �

One of the most important properties of parabolic isometries fixing Λ is the
following:

Proposition 3.9. Let u be a parabolic element in O+(Λ). Then:
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(1) There exists a vector θ in N ∩ Λ such that u(θ) = θ.
(2) There exists k > 0 such that uk belongs to Tθ.

Proof. (1) Let W = ker(f − id), and assume that the line Rθ doesn’t meet ΛQ.
Then the quadratic form q is negative definite on θ⊥∩WQ. We can decompose qWQ

as −
∑
i `

2
i where the `i’s are linear forms on WQ. Then q is also negative definite

on W , but q(θ) = 0 so we get a contradiction.
(2) By the first point, we know that we can choose an isotropic invariant vector

θ in Λ. Let us consider the free abelian group Σ := (θ⊥ ∩ Λ)/Zθ, the induced
quadratic form is negative definite. Therefore, since u is an isometry, the action of
u is finite on Σ, so an iterate of u belongs to Tθ. �

The definition below is motivated by Remark 3.2.

Definition 3.10. A subgroup G of O+(V ) is of moderate growth if it contains no
hyperbolic element.

Among groups of moderate growth, the most simple ones are finite subgroups of
O+(V ). Recall the following well-known fact:

Lemma 3.11. Any torsion subgroup of GL(n, Q) is finite.

Proof. Let g be an element in G, and ζ be an eigenvalue of g. If m is the
smallest positive integer such that ζm = 1, then ϕ(m) = degQ(ζ) 6 n, where
ϕ(m) =

∑
d|m d. Since ϕ(k) −−−−−→

k→+∞
+∞, there are finitely many possibilities for

m. Therefore, there exists a constant c(n) such that the order of any g in G divides
c(n). This means that G has finite exponent in GL(n, C), and the Lemma follows
from Burnside’s theorem. �

As a consequence of Lemmas 3.8 and 3.11, we get:

Corollary 3.12. A subgroup of O+(Λ) is finite if and only if all its elements are
elliptic.

We now concentrate on infinite groups of moderate growth. The main theorem
we want to prove is Gizatullin’s fixed point theorem:

Theorem 3.13. Let G be an infinite subgroup of moderate growth in O+(Λ). Then:

(1) There exists an isotropic element θ in N ∩ Λ such that for any element g
in G, g(θ) = θ.

(2) The group G can be written as G = Zr oH, where H is a finite group and
r > 0.

Proof. (1) Thanks to Corollary 3.11, G contains parabolic elements. Let g be a
parabolic element in G and θ be an isotropic vector. Let Λ∗ = (θ⊥ ∩ Λ)/Zθ. Since
the induced quadratic form on Λ∗ is negative definite, and an iterate of g acts
finitely on Λ∗; hence gk is in Tθ for some integer k.

Let g̃ be another element of G, and assume that g̃ doesn’t fix θ. We put η = g̃(θ).
If u = gk and v = g̃gkg̃−1, then u and v are nonzero elements of Tθ and Tη
respectively. Thanks to Corollary 7.10, G contains hyperbolic elements, which is
impossible since it is of moderate growth.
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(2) Let us consider the natural group morphism

ε : G→ O(Λ∗),

where Λ∗ = (θ⊥ ∩ Λ)/Zθ. The image of ε being finite, ker(ε) is a normal subgroup
of finite index in G. This subgroup is included in Tθ, so it is commutative. Besides,
it has no torsion thanks to Proposition 3.4 (1), and is countable as a subgroup of
GLn(Z). Thus it must be isomorphic to Zr for some r. �

4. Background Material on Surfaces

4.1. The invariant nef class. Let us consider a pair (X, f) where X is a smooth
complex projective surface and f is an automorphism of X whose action on NS(X)R
is a parabolic isometry.

Proposition 4.1. There exists a unique non-divisible nef vector θ in NS(X) ∩
ker(f∗ − id). Besides, θ satisfies θ2 = 0 and KX ·θ = 0.

Proof. Let S be the space of half-lines R+µ, where µ runs through nef classes in
NS(X). Taking a suitable affine section of the nef cone so that each half-line in S
is given by the intersection with an affine hyperplane, we see that S is bounded
and convex, hence homeomorphic to a closed euclidean ball in Rn−1. By Brouwer’s
fixed point theorem, f∗ must fix a point in S. This implies that f∗θ = λ θ for some
nef vector θ and some positive real number λ which must be one as f is parabolic.

Since θ is nef, θ2 > 0. By Lemma 3.3 (1), θ2 = 0 and by Lemma 3.3 (2),
KX ·θ = 0. It remains to prove that θ can be chosen in NS(X). This follows from
Lemma 3.9 (1). Since Rθ is the unique fixed isotropic ray, θ is unique up to scaling.
It is completely normalized if it is assumed to be non-divisible. �

Proposition 4.2. Let G be an infinite group of automorphisms of X having mod-
erate growth. Then there exists a G-invariant nef class θ in NS(X).

Proof. This follows directly from Theorem 3.13 and Proposition 4.1. �

4.2. Constructing elliptic fibrations. In this section, our aim is to translate the
question of the existence of f -invariant elliptic fibrations in terms of the invariant
nef class θ.

Proposition 4.3. If (X, f) is given, then X admits an invariant elliptic fibration
if and only if a multiple Nθ of the f -invariant nef class can be lifted to a divisor
D in the Picard group Pic(X) such that dim |D| = 1. Besides, such a fibration is
unique.

Proof. Let us consider a pair (X, f) and assume that X admits a fibration X
π−→ C

invariant by f whose general fiber is a smooth elliptic curve, where C is a smooth
algebraic curve of genus g. Let us denote by β the class of a general fiber Xz =
π−1(z) in NS(X). Then f∗β = β. The class β is obviously nef, so it is a multiple
of θ. This implies that the fibration (π, C) is unique: if π and π′ are two distinct
f -invariant elliptic fibrations, then β ·β′ > 0; but θ2 = 0.

Let C
ϕ−→ P1 be any branched covering (we call N its degree), and let us consider

the composition X
ϕ ◦π−−−→ P1. Let D be a generic fiber of this map. It is a finite
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union of the fibers of π, so the class of D in NS(X) is Nβ. Besides, dim |D| > 1. In
fact dim |D| = 1, otherwise D2 would be positive. This yields the first implication
in the proposition.

To prove the converse implication, let N be a positive integer such that if Nθ
can be lifted to a divisor D with dim |D| = 1. Let us decompose D as F +M , where
F is the fixed part (so that |D| = |M |). Then 0 = D2 = D ·F +D ·M and since D
is nef, D ·M = 0. Since |M | has no fixed component, M2 > 0, so the intersection
pairing is semi-positive on the vector space generated by D and M . It follows that
D and M are proportional, so that M is still a lift of a multiple of θ in Pic(X).

Since M has no fixed component and M2 = 0, |M | is basepoint free. By the Stein
factorisation theorem, the generic fiber of the associated Kodaira map X → |M |∗
is the disjoint union of smooth curves of genus g. The class of each of these curves
in the Neron–Severi group is a multiple of θ. Since θ2 = θ ·KX = 0, the genus
formula implies g = 1. To conclude, we take the Stein factorisation of the Kodaira
map to get a true elliptic fibration.

It remains to prove that this fibration is f -invariant. If C is a fiber of the fibration,
then f(C) is numerically equivalent to C (since f∗θ = θ), so C ·f(C) = 0. Therefore,
f(C) is another fiber of the fibration. �

Remark 4.4. The unicity of the fibration implies that any fN -elliptic fibration
(for a positive integer N) is f -invariant.

In view of the preceding proposition, it is natural to try to produce sections of
D by applying the Riemann–Roch theorem. Using Serre duality, we have

h0(D) + h0(KX −D) > χ(OX) +
1

2
D ·(D −KX) = χ(OX). (1)

In the next section, we will use this inequality to solve the case where the minimal
model of X is a K3-surface.

Corollary 4.5. If Theorem 1.1 holds for G = Z, then it holds in the general case.

Proof. Let G be an infinite subgroup of Aut(X) of moderate growth, f be a para-
bolic element of X, and assume that there exists an f -invariant elliptic fibration C
on X. If θ is the invariant nef class of X, then G fixes θ by Proposition 4.2. This
proves that C is G-invariant. �

4.3. Kodaira’s classification. Let us take (X, f) as before. The first natural
step to classify (X, f) would be to find what is the minimal model of X. It turns
out that we can rule out some cases without difficulties. Let κ(X) be the Kodaira
dimension of X.
• If κ(X) = 2, then X is of general type so its automorphism group is finite.

Therefore this case doesn’t occur in our study.
• If κ(X) = 1, we can completely understand the situation by looking at the

Itaka fibration X 99K |mKX |∗ for m� 0, which is Aut(X)-invariant. Let F be the
fixed part of |mKX | and D = mKX − F .

Lemma 4.6. The linear system |D| is a base point free pencil, whose generic fiber
is a finite union of elliptic curves.
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Proof. If X is minimal, we refer the reader to [12, pp. 574–575]. If X is not minimal,

let Z be its minimal model and X
π−→ Z the projection. Then KX = π∗KZ + E,

where E is a divisor contracted by π, so |mKX | = |mKZ | = |D|. �

We can now consider the Stein factorisation X → Y → Z of π. In this way, we
get an Aut(X)-invariant elliptic fibration X → Y .
• If κ(X) = 0, the minimal model of X is either a K3 surface, an Enriques

surface, or a bielliptic surface. We start by noticing that we can argue directly in
this case on the minimal model:

Lemma 4.7. If κ(X) = 0, every automorphism of X is induced by an automor-
phism of its minimal model.

Proof. Let Z be the minimal model of X and π be the associated projection. By
classification of minimal surfaces of Kodaira dimension zero, there exists a positive
integer m such that mKZ is trivial. Therefore, mKX is an effective divisor E whose
support is exactly the exceptional locus of π, and |mKX | = {E}. It follows that E
is invariant by f , so f descends to Z. �

Let us deal with the K3 surface case. We pick any lift D of θ in Pic(X). Since
χ(OX) = 2, we get by (1)

h0(D) + h0(−D) > 2.

Since D is nef, −D cannot be effective, so h0(−D) = 0. We conclude using Propo-
sition 4.3.

This argument doesn’t work directly for Enriques surfaces, but we can reduce to

the K3 case by arguing as follows: if X is an Enriques surface, its universal cover X̃

is a K3 surface, and f lifts to an automorphism f̃ of X̃. Besides, f̃ is still parabolic.

Therefore, we get an f̃ -invariant elliptic fibration π on X̃. If σ is the involution

on X̃ such that X = X̃/σ, then f̃ = σ ◦ f̃ ◦ σ−1, by the unicity of the invariant
fibration, π ◦ σ = π. Thus, π descends to X.

The case of abelian surfaces is straightforward: an automorphism of the abelian
surface C2/Λ is given by some matrix M in GL(2; Λ). Up to replacing M by an
iterate, we can assume that this matrix is unipotent. If M = id + N , then the
image of N : Λ→ Λ is a sub-lattice Λ∗ of Λ spanning a complex line L in C2. Then

the elliptic fibration C2/Λ
N−→ L/Λ∗ is invariant by M .

It remains to deal with the case of bi-elliptic surfaces. But this is easy because
they are already endowed with an elliptic fibration invariant by the whole automor-
phism group.
• If κ(X) = −∞, then either X is a rational surface, or the minimal model

of X is a ruled surface over a curve of genus g > 1. The rational surface case
is rather difficult, and corresponds to Gizatullin’s result; we leave it apart for the
moment. For blowups of ruled surfaces, we remark that the automorphism group
must preserve the ruling. Indeed, for any fiber C, the projection of f(C) on the base
of the ruling must be constant since C has genus zero. Therefore, an iterate of f
descends to an automorphism of the minimal model Z.

We know that Z can be written as P(E), where E is a holomorphic rank 2
bundle on the base of the ruling. By the Leray–Hirsh theorem, H1,1(Z) is the plane
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generated by the first Chern class c1(OE(1)) of the relative tautological bundle and
the pull-back of the fundamental class in H1,1(P1). Thus, f∗ acts by the identity
on H1,1(Z), hence on H1,1(X).

5. The Rational Surface Case

5.1. Statement of the result. From now on, X will always be a rational surface,
so h1(X, OX) = h2(X, OX) = 0. It follows that Pic(X) ' NS(X) ' H2(X, Z),
which implies that numerical and linear equivalence agree. In this section, we prove
the following result:

Theorem 5.1 [11]. Let X be a rational surface and f be a parabolic automorphism
of X. If θ is the nef f -invariant class in NS(X), then there exists an integer N
such that dim |Nθ| = 1.

Thanks to Proposition 4.2 and Corollary 4.5, this theorem is equivalent to The-
orem 1.1 for rational surfaces and is the most difficult result in Gizatullin’s paper.

5.2. Properties of the invariant curve. The divisor KX − θ is never effective.
Indeed, if H is an ample divisor, KX ·H < 0, so (KX − θ) ·H < 0. Therefore, we
obtain by (1) that |θ| 6= ∅, so θ can be represented by a possibly non-reduced and

reducible curve C. We will write the curve C as the divisor
∑d
i=1 ai Ci, where the

Ci are irreducible. Since θ is not divisible in NS(X), C is primitive.
In the sequel, we will make the following assumptions, and we are seeking for a

contradiction:

Assumptions. (1) We have |Nθ| = {NC} for all positive integers N .
(2) For any positive integer k, the pair (X, fk) is minimal.

Let us say a few words on (2). If for some integer k the map fk descends to an
automorphism g of a blow-down Y of X, then we can still argue with (Y, g). The
corresponding invariant nef class will satisfy (1). Thanks to Remark 4.4, we don’t
lose anything concerning the fibration when replacing f by an iterate.

We study thoroughly the geometry of C. Let us start with a simple lemma.

Lemma 5.2. If D1 and D2 are two effective divisors whose classes are proportional
to θ, then D1 and D2 are proportional (as divisors).

Proof. There exists integers N , N1, and N2 such that N1D1 ≡ N2D2 ≡ Nθ. There-
fore, N1D1 and N2D2 belong to |Nθ| so they are equal. �

The following lemma proves that C looks like a fiber of a minimal elliptic surface.

Lemma 5.3. (1) For 1 6 i 6 d, KX ·Ci = 0 and C ·Ci = 0. If the number d of
components of C satisfies d > 2, then C2

i < 0.
(2) The classes of the components Ci in NS(X) are linearly independent.
(3) The intersection form is nonpositive on the Z-module spanned by the Ci’s.
(4) If D is a divisor supported in C such that D2 = 0, then D is a multiple of C.
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Proof. (1) Up to replacing f by an iterate, we can assume that all the components
Ci of the curve C are fixed by f . By Lemma 3.3 (i), C2

i 6 0 and by Lemma 3.3
(ii), C ·KX = C ·Ci = 0 for all i. Assume that d > 2. If C2

i = 0, then C and
Ci are proportional, which would imply that C is divisible in NS(X). Therefore
C2
i < 0. If KX ·Ci < 0, the genus formula 2pa(Ci) − 2 = C2

i + KX ·Ci implies
that ga(Ci) vanishes and that C2

i = −1. Hence Ci is a smooth and f -invariant
exceptional rational curve. This contradicts Assumption (2). Thus KX ·Ci > 0.
Since KX ·C = 0, it follows that KX ·Ci = 0 for all i.

(2) If there is a linear relation among the curves Ci, we can write it as D1 ≡ D2,
where D1 and D2 are linear combinations of the Ci with positive coefficients (hence
effective divisors) having no component in common. We have D2

1 = D1 ·D2 > 0.
On the other hand C ·D1 = 0 and C2 = 0, so by the Hodge index theorem C and
D1 are proportional. This contradicts Lemma 5.2.

(3) Any divisor D in the span of the Ci’s is f -invariant, so Lemma 3.3 (1) yields
D2 6 0.

(4) If D2 = D ·C = 0, then D and C are numerically proportional. Therefore,
there exists two integers a and b such that aD− bC ≡ 0. By Lemma 5.2, aD = bC
and since C is primitive, D is a multiple of C. �

Lemma 5.4. (1) The curve C is 1-connected (see [1, pp. 69]).
(2) We have h0(C, OC) = h1(C, OC) = 1.
(3) If d = 1, then C1 has arithmetic genus one. If d > 2, all the curves Ci are

rational curves of self-intersection −2.

Proof. (1) Let us write C = C1 +C2, where C1 and C2 are effective and supported
in C, with possible components in common. By Lemma 5.3 (3), C2

1 6 0 and C2
2 6 0.

Since C2 = 0, we must have C1 ·C2 > 0. If C1 ·C2 = 0, then C2
1 = C2

2 = 0, so
Lemma 5.3 (4) implies that C1 and C2 are multiples of C, which is impossible.

(2) By (1) and [1, Corollary 12.3], h0(C, OC) = 1. The dualizing sheaf ωC of
C is the restriction of the line bundle KX + C to the divisor C. Therefore, for
any integer i between 1 and d, deg(ωC)|Ci = (KX + C) ·Ci = 0 by Lemma 5.3 (1).
Thanks to [1, Lemma 12.2], h0(C, ωC) 6 1 with equality if and only if ωC is trivial.
We can now apply the Riemann–Roch theorem for embedded singular curves [1,
Theorem 3.1]: since ωC has total degree zero, we have χ(ωC) = χ(OC). Next,
using Serre duality [1, Theorem 6.1], χ(ωC) = −χ(OC), so χ(OC) = χ(ωC) = 0. It
follows that h1(C, OC) = 1.

(3) This follows from the genus formula: 2pa(Ci)− 2 = C2
i +KX ·Ci = C2

i < 0,
whence pa(Ci) = 0 and C2

i = −2. Now the geometric genus is always smaller than
the arithmetic genus, so the geometric genus of Ci is 0, which means that Ci is
rational. �

We can now prove a result which will be crucial in the sequel:

Proposition 5.5. Let D be a divisor on X such that D ·C = 0. Then there
exists a positive integer N and a divisor S supported in C such that for all i,
(ND − S) ·Ci = 0.

Proof. Let V be the Q-vector space spanned by the Ci’s in NSQ(X), by Lemma
5.3 (2), it has dimension r. We have a natural morphism λ : V → Qr defined by
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λ(x) = (x ·C1, . . . , x ·Cr). The kernel of this morphism are vectors in V orthogonal
to all the Ci’s. Such a vector is obviously isotropic, and by Lemma 5.3 (4), it is a
rational multiple of D. Therefore the image of λ is a hyperplane in Qr, which is the
hyperplane

∑
i aixi = 0. Indeed, for any element x in V , we have

∑
i ai(x ·Ci) =

x ·C = 0.
Let us consider the element w = (D ·C1, . . . , D ·Cr) in Qr. Since

∑
i ai (D ·Ci) =

D ·C = 0, we have w = λ(S) for a certain S in V . This gives the result. �

5.3. The trace morphism. In this section, we introduce the main object in
Gizatullin’s proof: the trace morphism. For this, we must use the Picard group
of the embedded curve C. It is the moduli space of line bundles on the complex
analytic space OC , which is H1(C, O×C ).

Recall [1, Proposition 2.1] that H1(C, ZC) embeds as a discrete subgroup of
H1(C, OC). The connected component of the line bundleOC is denoted by Pic0(C),
it is the abelian complex Lie group H1(C, OC)/H1(C, ZC). We have an exact
sequence

0→ Pic0(C)→ Pic(C)
c1−→ H2(C, Z)

and H2(C, Z) ' Zd. Hence, connected components of Pic(C) are indexed by se-
quences (n1, . . . , nd) corresponding to the degree of the line bundle on each irre-
ducible component of C. By Lemma 5.4 (2), Pic0(C) can be either C, C×, or an
elliptic curve.

The trace morphism is a group morphism tr : Pic(X) → Pic(C) defined by
tr(L) = L|C . Remark that C ·Ci = 0 for any i, so the line bundle OX(C) re-
stricts to a line bundle of degree zero on each component ai Ci.

Proposition 5.6. (1) The line bundle tr(OX(C)) is not a torsion point in Pic0(C).
(2) The intersection form is negative definite on ker(tr).

Proof. (1) Let N be an integer such that N tr(OX(C)) = 0 in Pic(C). Then we
have a short exact sequence

0→ OX((N − 1)C)→ OX(NC)→ OC → 0.

Now h2(X, OX((N − 1)C)) = h0(OX(−(N − 1)C +KX) = 0, whence the map

H1(X, OX(NC))→ H1(C, OC)

is onto. It follows from Lemma 5.4 (2) that h1(X, OX(NC)) > 1, so by Riemann–
Roch

h0(X, OX(NC)) > h1(X, OX(NC)) + χ(OX) > 2.

This yields a contradiction since we have assumed that |Nθ| = {NC}.
(2) Let D be a divisor in the kernel of tr. By the Hodge index theorem D2 6 0.

Besides, if D2 = 0, then D and C are proportional. In that case, a multiple of C
would be in ker(tr), hence tr(OX(C)) would be a torsion point in Pic(C). �
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6. Proof of Gizatullin’s Theorem

6.1. The general strategy. The strategy of the proof is simple in spirit. Let P
be the image of tr in Pic(C), so we have an exact sequence of abelian groups

1 −→ ker(tr) −→ Pic(X) −→ P −→ 1.

By Proposition 5.6, the intersection form is negative definite on ker(tr), so f∗ is
of finite order on ker(tr). In the first step of the proof, we will prove that for
any divisor D on X orthogonal to C, f∗ induces a morphism of finite order on
each connected component of any element tr(D) in Pic(C). In the second step,
we will prove that the action of f∗ on Pic(X) is finite. This will give the desired
contradiction.

6.2. Action on the connected components of P. In this section, we prove
that f∗ acts finitely on “many” connected components of P. More precisely:

Proposition 6.1. Let D be in Pic(X) such that D ·C = 0, and let XD be a con-
nected component of tr(D) in Pic(C). Then the restriction of f∗ to XD is of finite
order.

Proof. We start with the case D = 0, so that X = Pic0(C). Then three situations
can happen:
• If Pic0(C) is an elliptic curve, then its automorphism group is finite (by auto-

morphisms, we mean group automorphisms).
• If Pic0(C) is isomorphic to C×, its automorphism group is {id, z → z−1},

hence of order two, so we can also rule out this case.
• Lastly, if Pic0(C) is isomorphic to C, its automorphism group is C×. We know

that C is a non-zero element of Pic0(C) preserved by the action of f∗. This forces
f∗ to act trivially on Pic0(C).

Let D be a divisor on X such that D ·C = 0. By Proposition 5.5, there exists
a positive integer N and a divisor S supported in C such that N tr(D) − tr(S) ∈
Pic0(C). Let m be an integer such that fm fixes the components of C and acts
trivially on Pic(C). We define a map λ : Z→ Pic0(C) by the formula

λ(k) = (fkm)∗{tr(D)} − tr(D)

Claim 1: λ does not depend on D.
Indeed, if D′ is in XD, then tr(D′ −D) ∈ Pic0(C), whence

(fkm)∗(D′ −D) = D′ −D.

This gives (fkm)∗{tr(D′)} − tr(D′) = (fkm)∗{tr(D)} − tr(D)
Claim 2: λ is a group morphism.

λ(k + l) = (fkm)∗(f lm)∗{tr(D)} − tr(D)

= (fkm)∗{(f lm)∗{tr(D)}} − {(f lm)∗{tr(D)}}+ (f lm)∗{tr(D)} − tr(D)

= λ(k) + λ(l) by Claim 1.

Claim 3: λ has finite image.
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For any integer k, since N tr(D)− tr(S) ∈ Pic0(C), (fkm)∗{N tr(D)} = N tr(D).
Therefore, we see that (fkm)∗{tr(D)}−tr(D) = λ(k) is aN -torsion point in Pic0(C).
Since there are finitely many N -torsion points, we get the claim.

We can now conclude. By claims 2 and 3, there exists an integer s such that the
restriction of λ to sZ is trivial. This implies that D is fixed by fms. By claim 1,
all elements in XD are also fixed by fms. �

6.3. Lift of the action from P to the Picard group of X. By Proposition
5.6 (2) and Proposition 6.1, up to replacing f with an iterate, we can assume that
f acts trivially on all components XD, on ker(tr), and fixes the components of C.

Let r be the rank of Pic(X), and fix a basis E1, . . . , Er of Pic(X) composed of
irreducible reduced curves in X. Let ni = Ei ·C. If ni = 0, then either Ei is a
component of C, or Ei is disjoint from C. In the first case Ei is fixed by f . In the
second case, Ei lies in the kernel of tr, so it is also fixed by f .

Up to re-ordering the Ei’s, we can assume that ni > 0 for 1 6 i 6 s and ni = 0
for i > s. We put m = n1 . . . ns, mi = m

ni
and Li = miEi.

Proposition 6.2. For 1 6 i 6 s, Li is fixed by an iterate of f .

Proof. For 1 6 i 6 s, we have Li ·C = m, so for 1 6 i, j 6 s, (Li − Lj) ·C = 0.
Therefore, by Proposition 6.1, an iterate of f acts trivially on XLi−Lj

. Since there
are finitely many couples (i, j), we can assume (after replacing f by an iterate)
that f acts trivially on all XLi−Lj .

Let us now prove that f∗Li and Li are equal in Pic(X). Since f∗ acts trivially on
the component XLi−Lj

, we have tr(f∗Li−Li) = tr(f∗Lj−Lj). Let D = f∗L1−L1.
Then for any i, we can write f∗Li − Li = D +Di, where tr(Di) = 0.

Let us prove that the class Di in Pic(X) is independent of i. For any element A
in ker(tr), we have

Di ·A = (f∗Li − Li −D) ·A = f∗Li ·f∗A− Li ·A−D ·A = −D ·A

since f∗A = A. Now since the intersection form in non-degenerate on ker(tr), if
(Ak)k is an orthonormal basis of ker(tr),

Di = −
∑
k

(Di ·Ak)Ak =
∑
k

(D ·Ak)Ak.

Therefore, all divisors Di are linearly equivalent. Since D1 = 0, we are done. �

We can end the proof of Gizatullin’s theorem. Since L1, . . . , Ls, Es+1, . . . , Er
span Pic(X) over Q, we see that the action of f on Pic(X) is finite. This gives the
required contradiction.

7. Minimal Rational Elliptic Surfaces

Throughout this section, we will assume that X is a rational elliptic surface
whose fibers contain no exceptional curves; such a surface will be called by a slight
abuse of terminology a minimal elliptic rational surface.
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7.1. Classification theory. The material recalled in this section is more or less
standard, we refer to [14, Chap. II, Section 10.4] for more details.

Lemma 7.1. Let X be a rational surface with K2
X = 0. Then |−KX | 6= ∅. Besides,

for any divisor D in |−KX |:
(1) h1(D, OD) = 1.
(2) For any divisor D such that 0 < D < D, h1(D, OD) = 0.
(3) D is connected and its class is non-divisible in NS(X).

Proof. The fact that |−KX | 6= ∅ follows directly from the Riemann–Roch theorem.
(1) We write the exact sequence of sheaves

0 −→ OX(−D) −→ OX −→ OD −→ 0.

Since X is rational, h1(X, OX) = h2(X, OX) = 0; and since D is an anticanonical
divisor, we have by Serre duality

h2(X, −D) = h0(X, KX) = 1.

(2) We use the same proof as in (1) with D instead of D. We have

h2(X, −D) = h0(X, KX +D) = h0(X, D −D) = 0.

(3) The connectedness follows directly from (1) and (2): if D is the disjoint re-
union of two divisors D1 and D2, then h0(D, OD) = h0(D1, OD1)+h0(D2, OD2) =
0, a contradiction.

Assume now that D = mD′ in NS(X), where D′ is not necessarily effective and
m > 2. Then, using Riemann–Roch,

h0(X, D′) + h0(X, −(m+ 1)D′) > 1.

If −(m + 1)D′ is effective, then |NKX | 6= ∅ for some positive integer N , which is
impossible. Therefore the divisor D′ is effective; and D −D′ = (m − 1)D′ is also
effective. Using Riemann–Roch one more time,

h0(D′, OD′)− h1(D′, OD′) = χ(OD′) = χ(OX)− χ(OX(−D′))

= −1

2
D′ ·(D′ +KX) = 0.

Thanks to (2), since 0 < D′ < D, h1(D′, OD′) = 0, whence h0(D′, OD′) = 0. This
gives again a contradiction. �

Proposition 7.2. Let X be a rational minimal elliptic surface and C be a smooth
fiber.

(1) K2
X = 0 and rk{Pic(X)} = 10.

(2) For any irreducible component E of a reducible fiber, E2< 0 and E ·KX = 0.
(3) There exists a positive integer m such that −mKX = C in Pic(X).

Proof. Let C be any fiber of the elliptic fibration. Then for any reducible fiber
D =

∑s
i=1 aiDi, Di ·C = C2 = 0. By the Hodge index theorem, D2

i 6 0. If
D2
i = 0, then Di is proportional to C. Let us write D = aiDi+ (D−aiDi). On the

one hand, aiDi ·(D − aiDi) = 0 since Di and D − Di are proportional to C. On
the other hand, aiDi ·(D − aiDi) > 0 since D is connected. This proves the first
part of (2).
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We have KX ·C = C ·C = 0. By the Hodge index theorem, K2
X 6 0. We have

an exact sequence

0 −→ KX −→ KX + C −→ ωC −→ 0.

Since h0(C, ωC) = 1 and h0(X, KX) = h1(X, KX) = h1(X, OX) = 0, one has
h0(X, KX + C) = 1. Thus, the divisor D = KX + C is effective. Since D ·C = 0,
all components of D are irreducible components of the fibers of the fibration. The
smooth components cannot appear, otherwise KX would be effective. Therefore, if
D =

∑s
i=1 aiDi, we have D2

i < 0. Since X is minimal, KX ·Di > 0 (otherwise Di

would be exceptional). Thus, KX ·D > 0.
Since C is nef, we have D2 = (KX + C) ·D > KX ·D > 0. On the other hand,

D ·C = 0, so D2 = 0 by the Hodge index theorem. Thus K2
X = 0. Since X is

rational, it follows that Pic(X) has rank 10. This gives (1).
Now K2

X = C2 = C ·KX = 0, so C and KX are proportional. By Lemma 7.1,
KX is not divisible in NS(X), so C is a multiple of KX . Since |dKX | = 0 for all
positive d, C is a negative multiple of KX . This gives (3).

The last point of (2) is now easy: E ·KX = − 1
mE ·C = 0. �

We can be more precise and describe explicitly the elliptic fibration in terms of
the canonical bundle.

Proposition 7.3. Let X be a minimal rational elliptic surface. Then for m large
enough, we have dim|−mKX | > 1. For m minimal with this property, |−mKX |
is a pencil without base point whose generic fiber is a smooth and reduced elliptic
curve.

Proof. The first point follows from Proposition 7.2. Let us prove that |−mKX |
has no fixed part. As usual we write −mKX = F + D, where F is the fixed part.
Then since C is nef and proportional to KX , C ·F = C ·D = 0. Since D2 > 0, by
the Hodge index theorem D2 = 0 and D is proportional to C. Thus D and F are
proportional to KX .

By Lemma 7.1, the class of KX is non-divisible in NS(X). Thus F = m′D for
some integer m′ with 0 6 m′ < m. Hence D = (m −m′)D = −(m −m′)KX and
dim |D| > 1. By the minimality of m, we get m′ = 0.

Since K2
X = 0, −mKX is basepoint free and |−mKX | = 1. Let us now prove

that the divisors in |−mKX | are connected. If this is not the case, we use the Stein
decomposition and write the Kodaira map of −mKX as

X → S
ψ−→ |−mKX |∗,

where S is a smooth compact curve, and ψ is finite. Since X is rational, S = P1

and therefore we see that each connected component D of a divisor in |−mKX |
satisfies dim |D| > 1. Thus dim |D| > 2 and we get a contradiction.

We can now conclude: a generic divisor in |−mKX | is smooth and reduced by
Bertini’s theorem. The genus formula shows that it is an elliptic curve. �

Remark 7.4. (1) Proposition 7.3 means that the relative minimal model of X is
an Halphen surface of index m, that is, a rational surface such that |−mKX | is a
pencil without fixed part and base locus. Such a surface is automatically minimal.
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(2) The elliptic fibration X → |−mKX |∗ doesn’t have a rational section if m > 2.
Indeed, the existence of multiple fibers (in our situation, the fiber mD) is an ob-
struction for the existence of such a section.

7.2. Reducible fibers of the elliptic fibration. We keep the notation of the
preceding section: X is a Halphen surface of index m and D is an anticanonical
divisor.

Lemma 7.5. All the elements of the system |−mKX | are primitive, except the
element mD.

Proof. Since KX is non-divisible in NS(X), a non-primitive element in |−mKX | is
an element of the form kD with D ∈ |m′D| and m = km′. But dim |m′D| = 0, so
|D| = |m′D| = {m′D}. �

In the sequel, we denote by S1, . . . , Sλ the reducible fibers of |−mKX |. We
prove an analog of Lemma 5.3, but the proofs will be slightly different.

Lemma 7.6. (1) Let S = α1E1 + · · ·+ανEν be a reducible fiber of |−mKX |. Then
the classes of the components Ei in NS(X) are linearly independent.

(2) If D is a divisor supported in S1∪ · · ·∪Sλ such that D2 = 0, then there exist
integers ni such that D = n1S1 + · · ·+ nλSλ.

Proof. If there is a linear relation among the curves Ei, we can write it as D1 ≡ D2,
where D1 and D2 are linear combinations of the Ei with positive coefficients (hence
effective divisors) having no component in common. We have D2

1 = D1 ·D2 > 0.
On the other hand S ·D1 = 0 and D2 = 0, so by the Hodge index theorem S and
D1 are proportional. Let E be a component of S intersecting D0 but not included
in D0. If aD1 ∼ b S, then 0 = b S ·E = aD1 ·E > 0, and we are done.

For the second point, let us write D = D1+ · · ·+Dλ, where each Di is supported
in Si. Then the Di’s are mutually orthogonal. Besides, Di ·C = 0, so D2

i 6 0 by
the Hodge index theorem. Since D2 = 0, it follows that D2

i = 0 for all i.
We pick an i and write Di = D and Si = S. Then there exists integers a and b

such that aD ∼ bS. Therefore, if D =
∑
βq Eq,

∑
q(aαq − bβq)Eq = 0 in NS(X).

By Lemma 7.6, aαq − bβq = 0 for all q, so b divides aαq for all q. By Lemma 7.5, b
divides a. If b = ac, then βq = cαq for all q, so D = cS. �

Let ρ : X → P1 be the Kodaira map of |−mKX |, and ξ be the generic point of
P1. We denote by X the algebraic variety ρ−1(ξ), which is a smooth elliptic curve
over the field C(t). The variety Pic0(X) is the jacobian variety of X, which can be
interpreted as the generic point of the jacobian fibration of X (see [14, Chap. II,
Section 10.3]). The set Pic0(X){C(t)} of C(t)-points of Pic0(X) is naturally in
bijection with the rational sections of the jacobian fibration.

We denote by Aut(X) of automorphisms of X defined over the field C(t), and by
N be the kernel of the natural surjective restriction map t : Pic(X)→ Pic(X){C(t)}.

Lemma 7.7. The group Aut(X) is isomorphic to the group of automorphisms of
X preserving the elliptic fibration fiberwise, and contains Pic0(X){C(t)} as a finite-
index subgroup. Besides, Pic0(X){C(t)} is naturally isomorphic to K⊥X/N .
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Proof. The first point is [14, Chap. II, Section 10.1, Thm. 1]. For the second point, if
ϕ is an automorphism of X, we can consider it as an automorphism of X preserving
the elliptic fibration. Hence ϕ6 acts by translation on all the smooth elliptic fibers,
so it defines a rational section of the jacobian fibration, which is the same as a
point of Pic0(X){C(t)}. The third point is proved as follows: for any divisor D in
Pic(X), deg t(D) = D ·C. Hence t−1(Pic0(X){C(t)}) = K⊥X . �

Proposition 7.8. If S1, . . . , Sλ are the reducible fibers of the pencil |−mKX |
and µj denotes the number of components of each curve Sj, then rkN = 1 +∑λ
i=1{µi − 1}.

Proof. The group N is generated by D and the classes of the reducible components
of |−mKX | (see [14, Chap. II, Section 3.5]). We claim that the module of relations
between these generators is generated by the relations α1[E1]+· · ·+αν [Eν ] = m[D],
where α1E1 + · · ·+ αsEs is a reducible member of |−mKX |.

Let D be of the form aD+D1 + · · ·+Dλ, where each Di is supported in Si, and
assume that D ∼ 0. Then (D1 + · · · + Dλ)2 = 0. Thanks to Lemma 7.6 (2), each

Di is equal to niSi for some ni in Z. Then a+m{
∑λ
i=1 ni} = 0, and

aD +D1 + · · ·+Dλ =

λ∑
i=1

ni(Si −mD).

We also see easily that these relations are linearly independent over Z. Thus, since

the number of generators is 1 +
∑λ
i=1 µi, we get the result. �

Corollary 7.9. We have the inequality
∑λ
i=1{µi−1}68. Besides, if

∑λ
i=1{µi−1}=

8, every automorphism of X acts finitely on NS(X).

Proof. We remark that N lies in K⊥X , which is a lattice of rank 9 in Pic(X). This

yields the inequality
∑λ
i=1(µi − 1) 6 8.

Assume N = K⊥X , and let f be an automorphism of X. Up to replacing f by
an iterate, we can assume that N is fixed by f . Thus f∗ is a parabolic translation
leaving the orthogonal of the isotropic invariant ray RKX pointwise fixed. It follows
that f acts trivially on Pic(X). �

Lastly, we prove that there is a major dichotomy among Halphen surfaces. Since
there is no proof of this result in Gizatullin’s paper, we provide one for the reader’s
convenience.

Let us introduce some notation: let Aut0(X) be the connected component of id

in Aut(X) and Ãut(X) be the group of automorphisms of X preserving fiberwise
the elliptic fibration.

Proposition 7.10 (see [11, Prop. B]). Let X be a Halphen surface. Then X has
at least two degenerate fibers. The following are equivalent:

(i) X has exactly two degenerate fibers.
(ii) Aut0(X) is an algebraic group of positive dimension.

(iii) Ãut(X) has infinite index in Aut(X).
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Under any of these conditions, Aut0(X) ' C×, and Ãut(X) is finite, and Aut0(X)
has finite index in Aut(X). Besides, X is a Halphen surface of index 1 and µ1 +
µ2 = 10.

Proof. Let Z be the finite subset of P1 consisting of points z such that π is not
smooth at some point of the fiber Xz, and U be the complementary set of Z in P1.
The points of Z correspond to the degenerate fibers of X.

Let M1,1 be the moduli space of elliptic curves (considered as a complex orb-
ifold), it is the quotient orbifold h/SL(2; Z) and its coarse moduli space |M1,1| is
C. The jacobian fibration of the elliptic surface X over U yields a morphism of
orbifolds φ : U → M1,1. Since the orbifold universal cover of M1,1 is the upper

half-plane h, φ induces a holomorphic map φ̃ : Ũ → h.

Assume that #Z ∈ {0, 1, 2}. Then Ũ = P1 or Ũ = C and φ̃ is constant. This
means that all fibers of X over U are isomorphic to a fixed elliptic curve E = C/Λ.
Hence π−1(U) can be represented by a class in H1(U, OU (Aut(E))). Let H be the
isotropy group of M1,1 at E, it is a finite group of order 2, 4 or 6. Then we have
two exact sequence of sheaves of groups{

0 −→ OU (E) −→ OU (Aut(E)) −→ HU −→ 0,

0 −→ ΛU −→ OU −→ OU (E) −→ 0.

If #Z ∈ {0, 1}, that is, U = P1 or U = C, this implies that H1(U, OU (Aut(E)))
vanishes. Hence X is birational to the product E × P1, which is impossible for
rational surfaces. This proves the first part of the theorem.

(iii)⇒ (i) We argue by contradiction. We have an exact sequence

0 −→ Ãut(X) −→ Aut(X)
κ−−→ Aut(P1)

The image of κ must leave the set Z globally fixed. If #Z > 3, then the image of

κ is finite, so Ãut(X) has finite index in Aut(X).
(i)⇒ (ii) Here, we deal with the case U = C×. The group H1(U, OU (Aut(E)))

is isomorphic to H. For any element h in H, let n be the order of h and ζ be
a n-th root of unity. The cyclic group Z/nZ acts on C× × E by the formula
p ·(z, e) = (ζpz, hp ·e). The open elliptic surface π−1(U) over C× associated with
the pair (E, h) is the quotient of C××E by the action of Z/nZ. Thanks to Lemma
7.7, the C× action on π−1(U) extends to X. Hence Aut0(X) contains C×.

(ii)⇒ (iii) We claim that Ãut(X) is countable. Indeed, Ãut(X) is a subgroup of
Aut(X) which contains Pic0 (X) as a finite index subgroup; and Pic(X) is a quotient
of Pic(X) which is countable since X is rational. Therefore, if Aut0(X) has positive

dimension, then Ãut(X) has infinite index in Aut(X)
It remains to prove the last statement of the Proposition. We have a split exact

sequence

0 −→ Ãut(X) −→ Aut(X) −→ C× −→ 0

Hence Aut0(X) ' κ(Aut0(X)) ' C×.
Let ε denote the natural representation of Aut(X) in NS(X). Since Aut0(X) ⊂

ker(ε), ker(ε) is infinite. Thanks to [13], im(ε) is finite. To conclude, it suffices
to prove that Aut0(X) has finite index in ker(ε). Any smooth curve of negative
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self-intersection must be fixed by ker(ε). Let P2 be the minimal model of X (which
is either P2 or Fn) and write X as the blowup of P2 along a finite set Z of (pos-
sibly infinitly near) points. Since Aut0(P2) is connected, ker(ε) is the subgroup of
elements of Aut(P2) fixing Z. This is a closed algebraic subgroup of Aut(P2), so
ker(ε)0 has finite index in ker(ε). Since ker(ε)0 = Aut0(X), we get the result.

To prove that µ1+µ2 = 10, we pick an argument in the proof of Proposition 7.11
below: if rkN < rkK⊥X , then the torsion free part of K⊥X/N embeds as a group
of parabolic automorphisms of X. But X carries no parabolic automorphisms at
all, so rkN = 9, which gives the result. The fact that these surfaces have index 1
can be checked explicitly by producing the corresponding Halphen pencils, whose
formulæ are written down in [11, Section 2]. �

7.3. The main construction. In this section, we construct explicit parabolic
automorphisms of Halphen surfaces.

Theorem 7.11. Let X be a Halphen surface such that
∑λ
i=1{µi − 1} 6 7. Then

there exists a free abelian group G of finite index in Aut(X) of rank 8−
∑λ
i=1{µi−1}

such that any non-zero element in G is a parabolic automorphism acting by trans-
lation on each fiber of the fibration.

Proof. Let Ãut(X) be the subgroup of Aut(X) corresponding to automorphisms of
X preserving the elliptic fibration fiberwise.

Thanks to Lemma 7.7,

K⊥X/N ' Pic0(X){C(t)} ↪→ Ãut(X),

where the image of the last morphism has finite index. By Proposition 7.8, the

rank of the N is
∑λ
i=1(µi − 1) + 1, which is less than 8. Let G be the torsion-free

part of K⊥X/N ; the rank of G is at least one. Any g in G acts by translation on the
generic fiber X and this translation is of infinite order in Aut(X). Besides, via the
morphism Pic(X)→ Pic(X){C(t)}, g acts by translation by tr(g) on Pic(X){C(t)},
so the action of g on Pic(X) has infinite order.

Let g in G, and let λ be an eigenvalue of the action of g on Pic(X), and assume
that |λ| > 1. If g∗v = λv, then v is orthogonal to KX and v2 = 0. It follows that v
is collinear to KX and we get a contradiction. Therefore, g is parabolic.

To conclude the proof it suffices to prove that Ãut(X) has finite index in Aut(X).
Assume the contrary. Then Proposition 7.10 implies that X has two degenerate
fibers. In that case µ1 + µ2 = 10 and we get a contradiction. �

Corollary 7.12. Let X be a Halphen surface. The following are equivalent :

(i)
∑λ
i=1{µi − 1} = 8.

(ii) The group Ãut(X) is finite.
(iii) The image of Aut(X) in GL(NS(X)) is finite.

Proof. (i)⇔ (ii) Recall that by Lemma 7.7, K⊥X/N has finite index in Ãut(X).
This gives the equivalence between (i) and (ii) since K⊥X/N is a free group of rank

8−
∑λ
i=1{µi − 1}.

(i)⇒ (iii) This is exactly Corollary 7.9.
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(iii)⇒ (i) Assume that
∑λ
i=1{µi − 1} 6 7. Then X carries parabolic automor-

phisms thanks to Theorem 7.11. This gives the required implication. �

Let us end this section with a particular but illuminating example: unnodal
Halphen surfaces. By definition, an unnodal Halphen surface is a Halphen surface
without reducible fibers. In this case, N is simply the rank one module ZKX , so
we have an exact sequence

0 −→ ZKX −→ K⊥X ↪−→
λ

Aut(X),

where the image of the last morphism has finite index. Then:

Theorem 7.13. For any α in K⊥X and any D in NS(X),

λ∗α(D) = D −m (D ·KX)α+

{
m (D ·α)− m2

2
(D ·KX)α2

}
KX .

Proof. Consider again the restriction map t : Pic(X) → Pic(X){C(t)} sending K⊥X
to Pic0(X){C(t)}. Then t(α) acts on the curve X by translation, and also on
Pic(X){C(t)} by the standard formula

t(α)∗(Z) = Z + deg(Z) t(α).

Applying this to Z = t(D) and using the formula deg t(D) = −m (D ·KX), we
get

t (λ∗α(D)) = t(D)−m (D ·KX) t(α).

Hence there exists an integer n such that

λ∗α(D) = D −m (D ·KX)α+ nKX .

Then

λ∗α(D)2 = D2 − 2m (D ·KX) (D ·α) +m2 (D ·KX)2 α2 + 2n (D ·KX).

We can assume without loss of generality that we have (D ·KX) 6= 0 since Pic(X)
is spanned by such divisors D. Since λ∗α(D)2 = D2, we get

n = m (D ·α)− m2

2
(D ·KX)α2. �
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